Posts in category .net

Azure Pipeline Build Variables

Azure Pipelines has been interesting to me especially given the generous free open source tier and seemingly instant availability of build agents. The setup is especially easy if you’re building .NET targets with lots of useful starters available.

A couple of areas have, however, been frustrating however - build variables and the difficulty in getting the app installed and the limitations on triggers if you can’t (non-GitHub apps can’t be installed on Enterprise accounts even if FREE).

We’ll concentrating on the build variable oddities for this post.

The Pipeline configuration helpfully has a tab named Variables that looks much like you’d expect with a big list of names, values, a lock icon and a checkbox for ‘Settable at queue time’.

There are however some oddities when compared to existing CI servers with these especially if you expect to be able to use them as environment variables.

Naming

The documentation for these - especially for Predefined build variables shows the expected variables but they use a dot naming convention.

This dot naming convention does not work if you are using them as environment variables. They are upper-cased and . is replaced with _ so for example:

Build.BuildNumber is actually BUILD_BUILDNUMBER.

Secrets

One even more confusing element is that when you mark you own (sensibly named) value as secret it suddenly stops being available as a environment variable.

Note: You should never build PRs with secret variables. Doing so allows anyone to submit a PR that simply echos them to the build log for harvesting. By default secrets are not available to pull requests in Azure Pipelines - leave it that way!

So how do you get these secret variables re-exposed as environment variables? While Stack Overflow has a bunch of complicated answers there is a much simpler way:

  1. Select the step from your job
  2. Expand the environment variables section
  3. Repeat the following steps for each environment variable
  4. Enter your variable name in the Name box
  5. Enter $(variable_name) in the Value box

Now when you run the job the build step will use the secure variable. This screenshot shows you an example:

Screenshot of the Azure Pipeline Variable being mapped

If I figure out workarounds for the app installations I’ll blog them!

[)amien

Model binding form posts to immutable objects

I’ve been working on porting over my blog to a static site generator and fired up an Azure Function to handle the form-comment to PR process to enable user comments to still be part of the site without using a 3rd party commenting system - more on that in a future post - and found the ASP.NET model binding for form posts distinctly lacking.

It’s been great getting back into .NET and brushing up some skills making the code clear, short and reusable. What I wanted was a super-clear action on my controller that tried to collect, validate and sanitize the data then if all was well create the pull request or report errors.

Ideally it would look like this;

[FunctionName("PostComment")]
public static async Task<HttpResponseMessage> Run([HttpTrigger(AuthorizationLevel.Anonymous, "post")] HttpRequestMessage request) {
    var form = await request.Content.ReadAsFormDataAsync();
    if (TryCreateComment(form, out Comment comment, out var errors))
        await CreateCommentAsPullRequest(comment);
    return request.CreateResponse(errors.Any()
      ? HttpStatusCode.BadRequest : HttpStatusCode.OK, String.Join("\n", errors));
}

To do that however we need a function capable of creating the Comment class from the form post. Sure you can manually do it field by field but that’s not very reusable, repetitive and of course no fun. The Comment class is also - like all good little objects - immutable.

Creating a function to do this is simple with a little bit of reflection;

private static object ConvertParameter(string parameter, Type targetType) {
    return String.IsNullOrWhiteSpace(parameter)
           ? null : TypeDescriptor.GetConverter(targetType).ConvertFrom(parameter);
}

private static bool TryCreateCommentFromForm(NameValueCollection form, out Comment comment, out List<string> errors) {
    var constructor = typeof(Comment).GetConstructors()[0];
    var values = constructor.GetParameters()
                            .ToDictionary(p => p.Name, p => ConvertParameter(form[p.Name], p.ParameterType)
                                      ?? (p.HasDefaultValue ? p.DefaultValue : new MissingRequiredValue()));
    errors = values.Where(p => p.Value is MissingRequiredValue)
                   .Select(p => $"Form value missing for '{p.Key}'").ToList();
    comment = errors.Any() ? null : (Comment)constructor.Invoke(values.Values.ToArray());
    return !errors.Any();
}

What this does is grab the constructor for the Comment and try to find keys in the form that match the parameter name. Any that are missing are reported as errors unless they have a default value in which case that is used. MissingRequiredValue is just an empty object to act as a sentinel. The use of TypeDescriptor.GetConverter means it should be quite happy handling ints, decimals, urls etc.

The constructor for Comment specifies which fields are required and the parameter names must match the form field names by convention. Any value that is optional has a default value that the constructor will happily fill in a sensible default for.

public Comment(string post_id, string message, string author, string email,
    DateTime? date = null, Uri url = null, int? id = null, string gravatar = null) {
    this.post_id = pathValidChars.Replace(post_id, "-");
    this.message = message;
    this.author = author;
    this.email = email;
    this.date = date ?? DateTime.UtcNow;
    this.url = url;
    this.id = id ?? new { this.post_id, this.author, this.message, this.date }.GetHashCode();
    this.gravatar = gravatar ?? EncodeGravatar(email);
}

I’ll post more of the form commenting system source soon once it’s a bit better tested and I look into anti-spam integration. Ideally I’ll also provide an AWS Lambda variant of the code so you can choose (or load balance) comment posting and almost certainly get what you need on the free tier. For now the Jekyll rendering templates and WordPress exporter are available.

[)amien

Differences between Azure Functions v1 and v2 in C#

I’ve been messing around in the .NET ecosystem again and have jumped back in with Azure Functions (similar to AWS Lambda) to get my blog onto 99% static hosting. I immediately ran into the API changes between v1 and v2 (currently in beta).

These changes are because v1 was based around .NET 4.6 using WebAPI 2 while the v2 is based on ASP.NET Core which uses MVC 6. There are some guides around to converting but none in the pure context of Azure Functions.

I’ll illustrate with a PageViewCount sample that uses Table Storage to retrieve and update a simple page count.

v1 (.NET 4.61 / WebAPI 2)

[FunctionName("PageView")]
public static async Task<HttpResponseMessage> Run(
    [HttpTrigger(AuthorizationLevel.Anonymous, "get")]HttpRequestMessage req, TraceWriter log) {
    var page = req.MessageUri.ParseQueryString()["page"];
    if (String.IsNullOrEmpty(page))
        return req.CreateErrorResponse(HttpStatusCode.BadRequest, "'page' parameter missing.");

    var table = Helpers.GetTableReference("PageViewCounts");
    var pageView = await table.RetrieveAsync<PageViewCount>("damieng.com", page)
        ?? new PageViewCount(page) { ViewCount = 0 };
    var operation = pageView.ViewCount == 0
        ? TableOperation.Insert(pageView)
        : TableOperation.Replace(pageView);
    pageView.ViewCount++;
    await table.ExecuteAsync(operation);

    return req.CreateResponse(HttpStatusCode.OK, new { viewCount = pageView.ViewCount });
}

v2 (ASP.NET Core / MVC 6)

[FunctionName("PageView")]
public static async Task<IActionResult> Run(
    [HttpTrigger(AuthorizationLevel.Anonymous, "get")]HttpRequest req, TraceWriter log) {
    var page = req.Query["page"];
    if (String.IsNullOrEmpty(page))
       return new BadRequestObjectResult("'page' parameter missing.");

    var table = Helpers.GetTableReference("PageViewCounts");
    var pageView = await table.RetrieveAsync<PageViewCount>("damieng.com", page)
        ?? new PageViewCount(page) { ViewCount = 0 };
    var operation = pageView.ViewCount == 0
        ? TableOperation.Insert(pageView)
        : TableOperation.Replace(pageView);
    pageView.ViewCount++;
    await table.ExecuteAsync(operation);

    return new OkObjectResult(new { viewCount = pageView.ViewCount });
}

Differences

The main differences are that:

  1. Return types are IActionResult/ObjectResult objects rather than extension methods against HttpRequestMessage (easier to mock/create custom ones)
  2. Input is the HttpRequest object rather than HttpResponseMessage (easier to get query parameters)

If you get the error ‘Can not create abstract class’ when executing your function then you are trying to use the wrong tech for that environment.

Helpers

Both classes above use a small helper class to take care of Table Storage which doesn’t have the nicest to use API. A wrapper much like a data context that ensures the right types go to the right table names might be an even better options.

static class Helpers {
    public static CloudStorageAccount GetCloudStorageAccount() {
        var connection = ConfigurationManager.AppSettings["DamienGTableStorage"];
        return connection == null ? CloudStorageAccount.DevelopmentStorageAccount : CloudStorageAccount.Parse(connection);
    }

    public static CloudTable GetTableReference(string name) {
        return GetCloudStorageAccount().CreateCloudTableClient().GetTableReference(name);
    }

    public static async Task<T> RetrieveAsync<T>(this CloudTable cloudTable, string partitionKey, string rowKey)
        where T:TableEntity {
        var tableResult = await cloudTable.ExecuteAsync(TableOperation.Retrieve<T>(partitionKey, rowKey));
        return (T)tableResult.Result;
    }
}

To compile

If you want to compile this or maybe you were just looking for code to do a simple page counter here’s the missing TableEntity class;

public class PageViewCount : TableEntity
{
    public PageViewCount(string pageName)
    {
        PartitionKey = "damieng.com";
        RowKey = pageName;
    }

    public PageViewCount() { }
    public int ViewCount { get; set; }
}

[)amien

Table per hierarchy in Azure Table Storage

If you’re coming from an ORM background to Azure Table Storage you might be wondering how to map class hierarchies to tables.

Documentation on the topic is hard to find unless you know the magic class name EntityResolver which you can discover by digging into the Azure Client for .NET source code.

Let’s say we have a basic blog style system (minimal fields shown):

public class Content {
  public string Id { get; set; }
  public string Title { get; set }
}

public class BlogPost : Content {
  public List<string> Topics { get; set; }
}

public class Page : Content {
  public String Slug { get; set; }
}

The trick is to create an instance of EntityResolver where T is your base class, e.g. Content. Strangely EntityResolver’s signature requires T implement new() so you can’t make your base class abstract.

Firstly we need to add to our base class some kind of identifier for the type – in ORM terms this is referred to as a discriminator. Then we’d override that in the sub-types to ensure new instances get the correct type set on insertion.

public class Content {
  public string Id { get; set; }
  public string Title { get; set }
}

public class BlogPost : Content {
  public List<string> Topics { get; set; }
}

public class Page : Content {
  public String Slug { get; set; }
}

Let’s say we want to store all of these in a table called ‘content’. We would typically write a small helper class to handle the cloud table and storage, e.g.

public class Content {
  public string Id { get; set; }
  public string Title { get; set }
  public virtual string ContentType { get; set; }
}

public class BlogPost : Content {
  public List<string> Topics { get; set; }
  public override string ContentType {
    get { return "blog"; }
    set { }
  }
}

public class Page : Content {
  public String Slug { get; set; }
  public override string ContentType {
    get { return "page"; }
    set { }
  }
}

With just that change you can actually start inserting rows into Azure Table Storage but querying them back will always result in Content types and saving those back will result in data loss!

We can however help the CloudTable client materialize the correct results by creating an EntityResolver:

EntityResolver<Content> contentResolver(partitionKey, rowKey, timestamp, properties, etag) {
  var contentType = properties["ContentType"].StringValue;
  switch (contentType) {
    case "blog": return new BlogPost();
    case "page": return new Page();
    default: throw new NotSupportedException(String.Format("Unknown ContentType '{0}'", contentType));
  }
}

Which is then passed into operations that materialize results. Note that some signatures don’t accept a resolver so find one that does even if it means supplying a default OperationContent. For example:

var query = table.CreateQuery<Content>().Where(c => c.PartitionKey == yearMonth);
var results = query.ExecuteQuery(query.AsTableQuery(), contentResolver, myRequestOptions, myOperationContext);

Given that these entity resolvers are essential to correctly materializing your results without data loss it’s worth wrapping the CloudTable client with the necessary setup/table-creation/entity resolver.

[)amien