Skip to content

Visual-Studio articles

8 Visual Studio debugging tips – debug like a boss  

There are so many useful debugging features built into Visual Studio that aren’t well-known. Here are a few my favorites including some recent finds in VS 2013.

1. Breakpoint inside a lambda

If you click the left gutter to set breakpoints you could be easily mislead into thinking breakpoints happen at line level.

You can actually insert a breakpoint inside parts of the line such as inside a lambda in your LINQ expression. Just right-click the part of the code and choose Breakpoint > Insert breakpoint from the context menu.

2. Usable output window

Visual Studio output window filtering optionsThe output window is useful for debugging where breakpoints would be too invasive or interrupt flow but it’s pretty noisy.

Just right-click in the output window (make sure output is set to debug) and turn off the Module Load, Module Unload, Process Exit and Thread Exit to leave you with stuff you actually care about. Now Debug.WriteLine to your heart’s content.

You can also press CtrlS in the output window to save the contents.

3. Attach debugger to client and server (VS 2012)

It’s useful to have both server and client projects in a single solution so you only need one copy of Visual Studio running and don’t get lost alt-tabbing back and forth especially if they share common code such as a data model project.

One disadvantage is that the start-up project is the only one to get a debugger attached. If you encounter an exception it will show in your client not your server project.

That’s easily solved now. Right-click on the solution, choose properties and choose Multiple startup projects then select the Start action for the projects you need to attach to.

Visual Studio Solution properties dialog

4. Create a repro project template

If you’re responsible for a SDK or API create a simple application that uses your stuff in a small self-contained way. Then use File > Export template… to save it.

Now you can create a new project from your template whenever you need it with a few clicks. Even better make it available to users and testers so they can send you minimal repros.

5. Use the DebuggerDisplay attribute

By default the debugger will use ToString() for watch and auto windows which normally outputs class name. Even if you overrode ToString it’s probably not what somebody debugging wants to see at a glance.

Add DebuggerDisplay to your class with a simple expression to evaluate properties instead. e.g.:

[DebuggerDisplay("Order {ID,nq}")
class Order {
    public string ID { get { return id; } }
}

The “nq” prevents double-quotes from being emitted. You can also use methods here too but don’t do anything with subtle side-effects otherwise your observation of the subject will change its behavior and could cause weird issues.

6. Manage breakpoints

You set-up some interesting breakpoints and now you need to switch one-off for as it’s getting hit too much but you’ll need it again in a minute. If you remove the breakpoint you’ll have to come back and find it again.

Enter the much-overlooked Breakpoints window CtrlAltB. This will show all breakpoints you have set but crucially lets you disable them without unsetting them by simply removing the check-mark. Check it again to re-enable it.

Visual Studio breakpoints window

This window also provides the ability to quickly:

  • Condition when a breakpoint should occur
  • Hit count to see how often it is hit and to only break based on that count
  • Label a breakpoint to allow toggling on and off in batches
  • When Hit to put a message in the output window instead of actually breaking

7. Break on or output the caller information (.NET 4.5/Windows 8 Store)

There isn’t a global variable for the current method of the caller and getting the current stack can be a very slow operation.

One quick and simple trick is to add an extra optional string parameter to the method with the CallerMemberName attribute. e.g.

void MyFunction(string someValue, [CallerMemberName] string caller = null) {
    ...
}

Because it is an optional value you don’t need to modify any callers but you can now:

  1. Set a breakpoint condition inside DoSomething based on the caller variable
  2. Output the contents of caller to a log or output window

You can also use CallerLineNumber and CallerFilePath. Also remember that constructors, finalizers and operator overloads will display their underlying method names (.ctor, op_Equals etc).

8. See the value returned by a function (VS 2013, .NET 4.5.1/Windows 8.1 Store)

Visual Studio autos windowSometimes you want to see what a function returned but you can’t easily because you didn’t store the value because it was the input to another function.

This was added in VS 2013 but is incredibly easy to miss as you have to be in the right place at the right time. The right place is the Autos window and the right time is exactly the step that returned you to where the function was called from. You won’t see this before you call the function or while in the function. It’s there for a single step and looks like this:

The arrow icon indicates it’s a return value and it lets you know the name of the function alongside it.

Wrap up

I also can’t stress enough how useful having logs are for troubleshooting once the software leaves your machine but that’s a much bigger discussion than this one.

Am I missing some great debugging tips? Feel free to let me know below :)

PS: Michael Parshin has some great tips on debugging too.

[)amien

5 simple steps to publishing a NuGet package  

There is a fair amount of info on making and publishing NuGet packages but I couldn’t find a simplified guide for the simple case. Here it is and start by downloading nuget.exe and putting it in your path.

1. Multi-platform considerations (optional)

Supporting multiple platforms gives you a choice to make:

  1. Portable Class Library (PCL)
  2. One project with MSBuild magic
  3. Multiple projects

If you can go with PCL do it. For CSharpAnalytics we use platform-specific system info and hooks so it’s not an option – we went with multiple projects.

Multiple projects

Creating a separate .csproj for each platform and putting in the same folder means adding files isn’t too painful (show all files then include the ones you need) but you do need to take steps to make sure the build process for the projects don’t interfere with each other by separating the bin and obj paths:

  1. Set the output path in the Build tab of project properties to be unique per configuration to for the bin files, e.g. “bin\Net45\Release\”
  2. Edit the .csproj file adding a BaseIntermediateOutputPath tag for obj files, e.g. <BaseIntermediateOutputPath>obj\Net45</BaseIntermediateOutputPath>

2. Create your .nuspec definition

Now that you know which release dll files you need to include you can go ahead and create the nuspec file that tells nuget how to package your files up.

Open a PowerShell and type nuget spec to create you an XML file to edit in your text editor

Once you’ve entered your author details, a snappy description and links to your project page and license you can then add the files. Libraries will want to copy the .dlls into the lib folder with element like these:

<file src="..\bin\Net45\Release\MyLibrary.dll" target="lib\net45" />

Each platform will require a specific target and they should use platform name (e.g. net45, sl5, windows8) described in the NuSpec creating packages documentation. That page has a lot more detail on things such as content file types etc.

If you prefer a graphical UI then NuGet Package Explorer will make your life easier.

Remember to check your .nuspec file to source control (there is nothing private in it) and add it to your solution as a solution item so it doesn’t get missed.

3. Create your .nupkg package

The easiest part of the process. From PowerShell type:

nuget pack yourfile.nuspec

If all goes well it will create yourfile.nupkg.

4. Test your package

Just because your package was created doesn’t mean it works and you don’t want to publish to the world until you know it works especially given you can’t delete packages from NuGet:

  1. Create a folder to be your own private testing NuGet repository, e.g. c:\testnuget
  2. Publish to your test repository with nuget push yourfile.nupkg -source c:\testnuget
  3. Configure Visual Studio to use your test repository by going to Tools > Library Package Manager > Package Manager Settings > Package Sources and then adding your test folder to the Available package sources test
  4. Create a new test application and then add a reference using Manage NuGet Packages to choose your new package from your test repository.
  5. Write a few lines of code to test you can actually use your package ok!

5. Publish to the world

Okay, you’re now ready to publish. If you haven’t yet signed up for an account over at Nuget.org you’ll need to do that first.

  1. Go to Your Account and copy your API key
  2. Run the PowerShell command nuget setApiKey followed by your API key, e.g. nuget setApiKey 99995594-38d2-42cd-a8b1-ddcd722bb7e7
  3. Run nuget push yourfile.nupkg again this time without the -source option to publish to the default public repository

[)amien

AnkhSVN 2.0 – free Subversion integration with Visual Studio  

The guys over on the AnkhSVN team have acquired new members and burnt the midnight oil to deliver a great 2.0 release with:

  • Subversion 1.5 merge & tracking support
  • Wizards to help step through tasks like merging
  • Now a source code control package (SCC) for smoother, faster integration
  • Pending changes window providing change summary
  • Easier to get up and running with the source
  • Property editor
  • Automatic update check

Despite all these great features it’s absolutely free and still works with older versions of Subversion and both Visual Studio 2005 and 2008.

What are you waiting for, go download AnkhSVN 2.0 already!

[)amien

Web site vs web application in Visual Studio  

Rob Conery got me thinking about web site maintenance and I put forward a brief comment on the two distinct types and how Visual Studio handles them which I have expanded upon here.

Web site

Primarily for working with ad-hoc web sites that have programmed elements. Easily identified by customer-specific content present in aspx files.

No solution or project files are required and the pages and source can reside locally (file system, IIS) or remotely (FTP, WebDev/FrontPage extensions) via the File > Open > Web Site… menu option.

Code-behind and classes are typically stored on the web server which compiles them in-memory on demand. Changes can be made to the files without restarting the application and losing sessions.

For Against
Quick edit, test, deploy cycle Syntax errors at runtime
No need to compile or restart app Can’t create an installer
Source always available Source on server useful to hackers

Web application

Web application projects were introduced as an add-on for Visual Studio 2005, later rolled in to VS 2005 SP1 and made a full first-class citizen with Visual Studio 2008.

Like the name implies these are primarily for web applications, those times when you have written a product or solution that happens to have a web interface.

Web application projects exist on your local drive and are treated like any other VS project type and can be added to existing solutions are subject to full compilation, validation and build steps.

Deployment is typically via MSI installers however you can also utilise the addition Web Deployment Projects add-in which allows you to deployment directly to servers which is useful for deploying to test environments.

For Against
Controlled build & deploy process Deployment causes application restart
No class files on web server, dll only Can’t deploy individual classes
Syntax errors at compile time  

Hybrid

Sander and I were discussing this article and thought an interesting solution might be to use the Web Application model for local development but to use the Publish option to publish all solution files to an intermediate directory.

Then in the intermediate directory just remove the bin/applicationname.dll file and copy to the target. This should prevent an application restart unless the web.config or global.asax/global.asax.vb files have been modified.

[)amien